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Part V: Data structures
The tools of bookkeeping

When thinking of algorithms we emphasize a dynamic sequence of actions: "Take this and do that, then that,  

then  …  ."  In  human  experience,  "take"  is  usually  a  straightforward  operation,  whereas  "do"  means  work.  In 

programming, on the other hand, there are lots of interesting examples where "do" is nothing more complex than 

incrementing a counter or setting a bit; but "take" triggers a long, sophisticated search. Why do we need fancy data  

structures at all? Why can't we just spread out the data on a desk top? Everyday experience does not prepare us to  

appreciate the importance of data structure—it takes programming experience to see that algorithms are nothing  

without data structures. The algorithms presented so far were carefully chosen to require only the simplest of data 

structures:  static  arrays.  The  geometric  algorithms  of  Part  VI,  on  the  other  hand,  and  lots  of  other  useful  

algorithms, depend on sophisticated data structures for their efficiency.

The key insight in understanding data structures is the recognition that an algorithm in execution is, at all times, 

in some state, chosen from a potentially huge state space. The state records such vital information as what steps 

have already been taken with what results, and what remains to be done. Data structures are the bookkeepers that 

record all this state information in a tidy manner so that any part can be accessed and updated efficiently. The 

remarkable fact is that there are a relatively small number of standard data structures that turn out to be useful in 

the most varied types of algorithms and problems, and constitute essential knowledge for any programmer.

The literature on data structures. Whereas one can present some algorithms without emphasizing data 

structures,  as  we  did  in  Part  III,  it  appears  pointless  to  discuss  data  structures  without  some  of  the  typical  

algorithms that  use  them;  at  the  very  least,  access  and update  algorithms form a  necessary  part  of  any  data 

structure. Accordingly, a new data structure is typically published in the context of a particular new algorithm. Only 

later,  as one notices its general applicability,  it  may find its  way into textbooks.  The data structures that have  

become standard today can be found in many books, such as [AHU 83], [CLR 90], [GB 91], [HS 82], [Knu 73a],  

[Knu 73b], [Meh 84a], [Meh 84c], [RND 77], [Sam 90a], [Sam 90b], [Tar 83], and [Wir 86].
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18. What is a data structure?
Learning objectives:

• data structures for manual use (e.g. edge-notched cards)

• general-purpose data structures

• abstract data types specify functional properties only

• data structures include access and maintenance algorithms and their implementation

• performance criteria and measures

• asymptotics

Data structures old and new

The discipline of data structures, as a systematic body of knowledge, is truly a creation of computer science. The  

question of how best to organize data was a lot simpler to answer in the days before the existence of computers: the 

organization had to be simple, because there was no automatic device that could have processed an elaborate data 

structure, and there is no human being with enough patience to do it. Consider two examples.

1. Manual  files  and catalogs,  as  used  in  business  offices  and libraries,  exhibit  several  distinct  organizing 

principles,  such as  sequential  and hierarchical  order and cross-references. From today's  point  of  view, 

however, manual files are not well-defined data structures. For good reasons, people did not rigorously  

define those aspects that we consider essential when characterizing a data structure: what constraints are 

imposed on  the data,  both  on the structure and its  content;  what  operations the data  structure must  

support;  what  constraints  these  operations  must  satisfy.  As  a  consequence,  searching  and  updating  a 

manual file is not typically a process that can be automated: It requires common sense, and perhaps even 

expert training, as is the case for a library catalog.

2. In manual computing (with pencil and paper or a nonprogrammable calculator) the algorithm is the focus 

of attention, not the data structure. Most frequently, the person computing writes data (input, intermediate 

results, output) in any convenient place within his field of vision, hoping to find them again when he needs 

them. Occasionally, to facilitate highly repetitive computations (such as income tax declarations), someone 

designs a form to prompt the user, one operation at a time, to write each data item into a specific field. Such  

a form specifies both an algorithm and a data structure with considerable  formality.  Compared to the  

general-purpose data structures we study in this chapter, however, such forms are highly special purpose.

Edge-notched cards are perhaps the most sophisticated data structures ever designed for manual use. Let us 

illustrate them with the example of a database of English words organized so as to help in solving crossword  

puzzles. We write one word per card and index it according to which vowels it contains and which ones it does not  

contain. Across the top row of the card we punch 10 holes labeled A, E, I, O, U, ~A, ~E, ~I, ~O, ~U. When a word,  

say ABACA, exhibits a given vowel, such as A, we cut a notch above the hole for A; when it does not, such as E, we  

cut a notch above the hole for ~E (pronounced "not E"). Exhibit 18.1 shows the encoding of the words BEAUTIFUL, 

EXETER, OMAHA, OMEGA. For example, we search for words that contain at least one E, but no U, by sticking  
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two needles through the pack of cards at the holes E and ~U. EXETER and OMEGA will drop out. In principle it is  

easy to make this sample database more powerful by including additional attributes, such as "A occurs exactly 

once",  "A occurs  exactly twice",  "A occurs as the first  letter  in the word",  and so on. In practice,  a few dozen 

attributes and thousands of cards will stretch this mechanical implementation of a multikey data structure to its  

limits of feasibility.

Exhibit 18.1: Encoding of different words in edge-notched cards.

In contrast to data structures suitable for manual processing, those developed for automatic data processing can 

be complex. Complexity is not a goal in itself, of course, but it may be an unavoidable consequence of the search for  

efficiency. Efficiency, as measured by processing time and memory space required, is the primary concern of the 

discipline of data structures. Other criteria, such as simplicity of the code, play a role, but the first question to be  

asked when evaluating a data structure that supports a specified set of operations is typically: How much time and  

space does it require?

In contrast to the typical situation of manual computing (consideration of the algorithm comes first, data gets  

organized only as needed), programmed computing typically proceeds in the opposite direction: First we define the 

organization of the data rigorously, and from this the structure of the algorithm follows. Thus algorithm design is  

often driven by data structure design.

The range of data structures studied

We present  generally  useful  data  structures  along with the corresponding query,  update,  and maintenance 

algorithms; and we develop concepts and techniques designed to organize a vast body of knowledge into a coherent 

whole. Let us elaborate on both of these goals.

"Generally useful" refers to data structures that occur naturally in many applications. They are relatively simple 

from the point of view of the operations they support—tables and queues of various types are typical examples. 

These basic data structures are the building blocks from which an applications programmer may construct more 

elaborate structures tailored to her particular application. Although our collection of specific  data structures is 

rather small, it covers the great majority of techniques an applications programmer is likely to need.

We develop a unified scheme for understanding many data structures as special cases of general concepts. This  

includes:
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• The separation of abstract data types, which specify only functional properties, from data structures, which 

also involve aspects of implementation

• The classification of all data structures into three major types: implicit data structures, lists, and address 

computation

• A rough assessment of the performance of data structures based on the asymptotic analysis of time and  

memory requirements

The simplest and most common assumption about the elements to be stored in a data structure is that they  

belong to a domain on which a total order ≤ is defined. Examples: integers ordered by magnitude, a character set 

with its  alphabetic  order,  character strings  of  bounded length ordered lexicographically.  We assume that  each 

element in a domain requires as much storage as any other element in that domain; in other words, that a data  

structure manages memory fragments of fixed size. Data objects of greatly variable size or length, such as fragments 

of text, are typically not considered to be "elements"; instead, they are broken into constituent pieces of fixed size,  

each of which becomes an element of the data structure.

The elements stored in a data structure are often processed according to the order ≤ defined on their domain.  

The topic of  sorting,  which we surveyed in “Sorting and its complexity”,  is closely related to the study of data  

structures: Indeed, several sorting algorithms appear "for free" in “List structures”, because every structure that 

implements the abstract data type  dictionary leads to a sorting algorithm by successive insertion of elements, 

followed by a traversal.

Performance criteria and measures

The design of data structures is dominated by considerations of efficiency, specifically with respect to time and 

memory. But efficiency is a multifaceted quality not easily defined and measured. As a scientific discipline, the 

study of  data  structures  is  not  directly  concerned with the number  of  microseconds,  machine  cycles,  or  bytes 

required by a specific program processing a given set of data on a particular system. It is concerned with general  

statements from which an expert practitioner can predict concrete outcomes for a specific processing task. Thus, 

measuring run times and memory usage is not the typical way to evaluate data structures. We need concepts and  

notations  for  expressing  the  performance  of  an  algorithm  independently  of  machine  speed,  memory  size,  

programming language, and operating system, and a host of other details that vary from run to run.

The solution to this problem emerged over the past two decades as the discipline of computational complexity 

was developed. In this theory, algorithms are "executed" on some "mathematical machine", carefully designed to be 

as simple as possible to reflect the bare essentials of a problem. The machine makes available certain  primitive 

operations, and we measure "time" by counting how many of those are executed. For a given algorithm and all the  

data sets it accepts as input, we analyze the number of primitive operations executed as a function of the size of the 

data. We are often interested in the worst case, that is, a data set of given size that causes the algorithm to run as 

long as possible, and the average case, the run time averaged over all data sets of a given size.

Among the many different mathematical machines that have been defined in the theory of computation, data 

structures are evaluated almost exclusively with respect to a theoretical random access machine (RAM). A RAM is 

essentially a memory with as many locations as needed, each of which can hold a data element, such as an integer,  

or a real number; and a processing unit that can read from any one or two locations, operate on their content, and  

write the result back into a third location, all  in one time unit.  This model is rather close to actual sequential  
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computers, except that it incorporates no bounds on the memory size—either in terms of the number of locations or  

the size of the content of this location. It implies, for example, that a multiplication of two very large numbers  

requires no more time than 2 · 3 does. This assumption is unrealistic for certain problems, but is an excellent one 

for most program runs that fit in central memory and do not require variable-precision arithmetic or variable-

length data elements. The point is that the programmer has to understand the model and its assumptions, and 

bears responsibility for applying it judiciously.

In this model, time and memory requirements are expressed as functions of input data size, and thus comparing  

the performance of two data structures is reduced to comparing functions. Asymptotics has proven to be just the 

right tool for this comparison: sharp enough to distinguish different growth rates, blunt enough to ignore constant 

factors that differ from machine to machine.

As an example of the concise descriptions made possible by asymptotic operation counts, the following table 

evaluates several implementations for the abstract data type 'dictionary'. The four operations 'find', 'insert', 'delete',  

and  'next'  (with  respect  to  the  order  ≤)  exhibit  different  asymptotic  time  requirements  for  the  different 

implementations. The student should be able to explain and derive this table after studying this part of the book.

Ordered array Linear list Balanced tree Hash table

find O(log n) O(n) O(log n) O(1)a 

next O(1) O(1) O(log n) O(n) 

insert O(n) O(n) O(log n) O(1)a 

delete O(n) O(n) O(log n) O(1)b 

a On the average, but not necessarily in the worst case

b Deletions are possible but may degrade performance

Exercise

1. Describe the manual data structures that have been developed to organize libraries (e.g. catalogs that allow 

users to get access to the literature in their field of interest, or circulation records, which keep track of who 

has borrowed what book). Give examples of queries that can be answered by these data structures.
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